Физики из России и Великобритании впервые рассчитали максимально возможную скорость звука — 36 км в секунду, что примерно в два раза больше, чем скорость звука в алмазе, самом твердом известном материале в мире. Результаты исследования опубликованы в журнале Science Advances.
Специальная теория относительности Эйнштейна устанавливает абсолютный предел скорости, с которым может двигаться волна, который равен скорости света — примерно 300 тыс км в секунду. Однако до сих пор не было известно, имеют ли верхний предел скорости звуковые волны.
Скорость звука определяется упругостью и плотностью среды, в газах и жидкостях она меньше, в твердых телах — больше. Поэтому, приложив ухо к рельсам, можно услышать приближающийся поезд намного раньше, чем шум от него придет по воздуху.
Ученые из Лондонского университета Королевы Марии, Кембриджского университета и Института физики высоких давлений в Троицке рассчитали максимально возможную скорость звука на основе двух безразмерных фундаментальных физических констант: постоянной тонкой структуры и отношения масс протона и электрона.
Известно, что эти два числа играют ключевую роль во многих процессах Вселенной: от их значения зависит ход таких реакций, как распад протона и ядерный синтез в звездах, а баланс между этими двумя величинами задает узкий коридор "обитаемой зоны", где могут образовываться планеты и возникать поддерживающие жизнь молекулярные структуры.
Авторы предположили, что скорость звука должна уменьшаться с увеличением массы атома. Согласно этому теоретическому предсказанию, которое ученые проверили на широком спектре материалов, самый быстрый звук будет в твердом атомарном водороде.
В ядре газовых гигантов, таких как Юпитер, где давление превышает один миллион атмосфер, водород находится в твердом состоянии, он представляет из себя металл, обладающий сверхпроводниковыми свойствами. Выполнив квантово-механические расчеты, авторы определили, что скорость звука в твердом атомарном водороде близка к теоретическому фундаментальному пределу.
Исследователи полагают, что результаты работы будут иметь и серьезное научное применение, в частности, помогут найти пределы таких физических параметров, как вязкость и теплопроводность, используемых в теоретических расчетах, связанных с высокотемпературной сверхпроводимостью, кварк-глюонной плазмой и физикой черных дыр, передает РИА Новости.